Cirrus cloud radiative effect on surface-level shortwave and longwave irradiances at regional and global scale

J-C. Dupont (1), M. Haeffelin (1), C. N. Long (2)

(1) Institut Pierre-Simon Laplace, Paris, France
(2) Pacific Northwest National Laboratory, Richland, WA, USA

jean-charles.dupont@lmd.polytechnique.fr /Fax: +33169335108 / Phone: +33169335145

ABSTRACT
In this study, we analyze two datasets: ground-based and satellite measurements. The firsts correspond to solar and infrared irradiance measurements, cloud and aerosol Lidar backscattering profiles, microwave radiometer brightness temperatures, radiosonde profiles, and sun-photometer extinctions monitored at four observatories located in the midlatitudes, the Tropics and the Arctic. This dataset permits to estimate the Cirrus cloud Radiative Forcing on surface-level shortwave (CRE\textsubscript{SW}) and longwave (CRE\textsubscript{LW}) irradiances. The sensitivity of CRE\textsubscript{SW} to Cloud Optical Thickness (noted CRE\textsubscript{SW}*) is established and ranges from 100 W m-2 to 200 W m-2 per unit of cloud optical thickness. The importance of aerosols and water vapor content obtained in studying the 4 observatories allows us to quantify the combined influence of aerosol optical thickness and integrated water vapor on CRE\textsubscript{SW}* : 10 to 20 % CRE\textsubscript{SW}* range for turbid and pristine atmosphere. Moreover, the sensitivity of the CRFLW to both cloud emissivity and cloud temperature (noted CRE\textsubscript{LW}*) is established and the influence of integrated water vapor on CRE\textsubscript{LW}* quantified. The long-term dataset allows quantifying the impact of subsisible cirrus cloud on the anomaly of direct and diffuse solar irradiances at the surface over ARM SGP site since 10 years.

Satellite measurements are used next as input parameters to the cirrus cloud radiative forcing parameterizations to calculate CRE\textsubscript{SW} and CRE\textsubscript{LW} at global scale. CALIOP provide aerosol and cirrus cloud properties and AIRS the integrated water vapor. Meridian distribution are shown and discussed. They reveal a positive cirrus cloud net radiative effect (CRE\textsubscript{SW} + CRE\textsubscript{LW}) from 30°N poleward during boreal winter and from 45°S during astral winter. The cumulative cirrus cloud net radiative effect reaches +1.5 W m-2 for these two winter cases and -8 W m-2 near the equator.

1. INTRODUCTION
Numerous studies have demonstrated that the global average frequency of cirrus cloud occurrence is near 17% ([1]) and can reach 45% in the Tropics with a maximum occurrence frequency up to 70% near the tropics over 100°-180°E longitude band ([2]). The significant coverage of cirrus clouds, their persistence, their large area extent and their high altitude make them important components in the total radiation budget and in the vertical transport of energy through radiative processes ([3]). Reference [4] has identified that these clouds are one of the sources of uncertainty in the study of Earth’s radiation budget and climate.

To precisely quantify the surface CRE and to understand the relationship between this CRE and atmospheric properties, accurate measurements of each parameter added to simultaneously radiation measurements have to be taken. Reference [5] shows that the predominant surface CRE are associated with thin cirrus cloud layers and thick low-level clouds, due in part to their very frequent occurrence compared to other types of clouds. Reference [6] establishes correlations between cloud fraction and surface CRE and quantify the seasonal cycle of CRE showing an average annual CRE\textsubscript{SW} (CRE\textsubscript{LW}) of -37 W m-2 (17 W m-2) for high altitude clouds. Finally, reference [7] quantifies the relationship between CRE and cirrus cloud and atmospheric properties. CRE\textsubscript{SW} (CRE\textsubscript{LW}) is driven by cloud optical thickness and atmospheric turbidity (water vapor amount and cirrus infrared emissive power).

In this study, we present (1) the correlations between CRE and macrophysical and optical properties of cirrus cloud modulated by atmospheric compositions, (2) the monthly CRE\textsubscript{SW} and CRE\textsubscript{LW} cycle for continental, arctic, tropical and oceanic sites and (3) the global distribution of surface CRE induced by cirrus cloud for 2006-2007 periods.

2. OBSERVATIONAL DATA SETS
2.1 Ground-based measurement
To quantify the high altitude cloud radiative forcing at the surface, we need the following informations: (1) high quality shortwave and longwave irradiance measurements, (2) screen-level temperature and water-vapor pressure, (3) column-integrated water vapor density and aerosol optical thickness, (4) vertical profiles of temperature, and finally (5) unambiguous identification of cloud-free and cloudy situations. We choose to use measurements from two mid-latitude sites, the SIRTA Observatory and the ARM SGP Lamont site, one tropical site with the ARM TWP Nauru site and finally one arctic site with ARM NSA Barrow site.

These four multi-latitude sites are characterized by different climate regimes like US continental for Lamont, French oceanic/sub-urban for SIRTA, coastal tropical and arctic for Nauru and Barrow respectively. The variability in terms of aerosols, water vapor and clouds is very large between each site and permit to study the impact of this very important range of atmospheric and high altitude cloud properties on shortwave and longwave irradiances received at the surface (Figure 1).
2.2 Spatial observations data set

Cirrus cloud and aerosol properties at global scale are here obtained using observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) spaceborne lidar, part of the CALIPSO mission [8]. The CALIPSO satellite was launched in April of 2006 and passes in the same track every 16 days [9]. Official CALIOP Level 2 (version 2) data products are used in this study [9]. We use 1 year of CALIOP data products in the 2006/07-2008/06 period to sample all seasons uniformly. Both daytime and nighttime data are considered.

Water vapor content at global scale is collected from the observations provided by The Atmospheric Infrared Sounder (AIRS). AIRS was launched on the Aqua research satellite, a major component of NASA’s Earth Observing System, in May 2002. Integrated water vapor level 2 version 5 data products are used in this study.

2.3 Clear-sky and overcast period detection

In this study, the term “clear-sky” is defined as a sky without any liquid water or ice cloud. Clear-sky periods during daytime are selected by two automated methods based on shortwave and longwave irradiances. However, this methodology can be biased by optically-thin clouds [10]. Hence, to be sure of the totally clear-sky situations, we add a threshold algorithm based on lidar measurements.

Observed periods are defined as overcast when all lidar profiles within 1-hour contain clouds. Only clouds with base altitude higher than 7 km are here considered with no cloud below for SGPA, SIRTA and TWP site. Concerning NSA site, we consider all clouds higher than 4 km in order not to consider only Polar Stratospheric Clouds. Additionally, only overcast periods longer than 3 hours are considered to ensure a persistent impact on LW and SW irradiances.

3. SENSITIVITY OF CIRRUS RADIATIVE EFFECT

Cirrus cloud radiative effect estimations require precise references of solar and infrared irradiances for the cloud-free atmosphere. In fact, the cirrus cloud radiative effects at the surface on both shortwave (CRE$_{SW}$) and longwave irradiances (CRE$_{LW}$) are defined as the difference between the shortwave and longwave irradiances measured in overcast situations and the clear-sky references values. In this study, clear-sky reference values are obtained from parameterizations fitted directly to observed data.

3.1 Shortwave radiative effect parameterization

Figure 2 shows a scatter plot of the shortwave cirrus cloud radiative effect (CRE$_{SW}$) versus COT for the data collected in all the sites. The dashed line is the best linear fit optimized by the method of the least squares applied on the CRE$_{SW}$ median every 0.1 COT step. The black dot markers correspond to CRE$_{SW}$ median every 0.1 COT step. The slope of this fit is -118 W m$^{-2}$ COT$^{-1}$ with a correlation factor of 0.81.
3.2 Longwave radiative effect parameterization

The longwave irradiance emitted by the cirrus cloud is noted \(LW_{\text{cirrus}} \) and is computed from Stephan-Boltzmann’s law based on the cirrus cloud infrared emissivity and thermodynamic temperature inside the cirrus cloud. The cloud thermodynamic temperature is derived by combining radiosonde and Lidar measurements that provide temperature profiles and cloud mean altitude, respectively. Temperatures are interpolated between radiosoundings at the time and altitude of lidar observations.

As water vapor is an efficient absorber of longwave radiation and water vapor content is highly variable on synoptic and seasonal scales, measured \(\text{CRE}_{LW} \) is likely to be affected by the water vapor content of the atmosphere between surface and cloud base. For a totally dry atmosphere or totally wet atmosphere, \(\text{CRE}_{LW} \) is 0.32 or 0.02 respectively.

Equation 2 sums up the methodology used to quantify the cirrus cloud effect on longwave irradiance measured at the surface. We present the definition of the \(\text{CRE}_{LW} \), the parametric equation associated with and \(\gamma \) term used in the calculation.

\[
\text{CRE}_{LW} = \text{CRE}_{LW} \times \text{TOT}_{\text{LW}}
\]

\[
\text{CRE}_{LW} = -0.13 \times \gamma^3 + 0.51 \times \gamma^2 - 0.63 \times \gamma + 0.32
\]

with \(\gamma = \frac{v \sqrt{T_e}}{\text{IWV}} \times 10000 \)

4. INSTANTANEOUS AND CUMULATIVE CRE

The relative importance of the cirrus clouds in the current climate’s radiation budget also depends on their abundance. In fact, as shown by [11] the cloud fraction of the cirrus cloud induced a cumulative SW (LW) cloud effect stronger than low level-clouds. We define the sunshine duration ratio as the ratio between sunshine duration period in hours and 24. Hence, the cumulative cirrus cloud effect equals the instantaneous \(\text{CRE}_{SW} \) (\(\text{CRE}_{LW} \)) multiplied by the cloud fraction and the sunshine duration ratio (we calculate a day and night \(\text{CRE}_{LW} \)).

4.1 Monthly variations at regional scale

The monthly means of the LW, SW, and NET cirrus cloud instantaneous radiative effect for SGP, SIRTA and TWP sites are illustrated in Figure 3. \(\text{CRE}_{NET} \), the sum of SW and LW cirrus cloud radiative effect, are primarily determined by \(\text{CRE}_{SW} \) throughout most of the year. During winter, however, the negative \(\text{CRE}_{SW} \) and positive \(\text{CRE}_{LW} \) nearly cancel each other, resulting in \(\text{CRE}_{NET} \) of -7 and -7.6 W m\(^{-2} \) for SIRTA and SGP sites. \(\text{CRE}_{LW} \) over SGP site has a significant annual cycle, due to the important range of water vapor (Figure 1) inducing important range of \(\text{CRE}_{LW} \), with value ranging between 18.3 W m\(^{-2} \) to 10.7 W m\(^{-2} \) in winter and summer respectively. \(\text{CRE}_{SW} \) is a little bit higher in summer period over SGP and SIRTA sites (+10-15 W m\(^{-2} \) of radiative impact during summer compared to winter period) in correlation with smaller solar zenith angle (synonymous of a higher \(\text{CRE}_{SW} \)). Finally, we note a net positive impact in February (7 W m\(^{-2} \) and near 0 W m\(^{-2} \) in March and December (-1.1 and -0.2 W m\(^{-2} \) over SGP site and of 0.3 W m\(^{-2} \) in November over SIRTA site. Cirrus net effect over TWP site is mainly composed of the SW effect (seasonal average ranging from -49 to -16 W m\(^{-2} \) because of the very limited LW effect (annual average of 1.0 W m\(^{-2} \)).

4.2 Seasonal and zonal variations at global scale

To calculate de cumulative cirrus cloud effect, we calculate for each 2.5°x2.5° the cloud fraction and the sunshine duration. Cirrus cloud fraction (not shown here) reaches almost 60% near the equator, 30% for 30°N-60°N and 25% for 30°S-60°S.
pact of -3.6, 1.1 and -2.5 W m$^{-2}$. Main differences come from the definition of the cumulative effect that they defined without account for the sunshine duration what tend to increase the CRE$_{SW}$ and minimize the CRE$_{LW}$. The decreasing of the sunlight duration during the winter induces a net positive CRE starting from 20°N and 30°N for the autumn reaching a maximum of 0.8 W m$^{-2}$. The CRE$_{LW}$ is maximum near the equator, with 1.5 W m$^{-2}$, due to the much more important cloud fraction that compensate the strong water content in this region. However, the net effect if negative in this region related to the strong CRE$_{SW}$. The seasonal average of CRE$_{SW}$ is relatively constant for 15°S-15°N zone (average value of -5.2 W m$^{-2}$) whereas the range is much more significant for 15°S-45°S (-4.1 W m$^{-2}$ in winter and -2.0 W m$^{-2}$ in summer) and for 15°N-45°N (-1.3 W m$^{-2}$ in winter and -4.8 W m$^{-2}$ in summer). This range is related to the ITCC variability that induced important changes in the cirrus cloud fraction in North and South hemisphere.

5. CONCLUSIONS

In this study, we derive (1) the sensitivity of surface CRE$_{SW}$ to the cloud optical thickness modulated by the solar zenith angle and the atmospheric turbidity (noted CRE$_{SW}$*) and (2) the sensitivity of surface CRE$_{LW}$ to the infrared emissive power of cirrus cloud modulated by the water vapor content (noted CRE$_{LW}$*). The average CRE$_{SW}$* is -120 W m$^{-2}$ · COT$^{-1}$ but it ranges from 80 to -140 m$^{-2}$ · COT$^{-1}$ depending on the solar illumination with a residual variability ranges from +40 and -40 W m$^{-2}$ · COT$^{-1}$ from pristine to turbid conditions respectively. We have also established one parametric equation that accounts for this variability, considering solar zenith angle and water vapor and aerosol optical thickness as input parameter. The CRE$_{LW}$*, that corresponds to the cirrus radiative effect on surface level shortwave and longwave irradiances, that can be parameterized with the cloud optical thickness (COT) or the cloud optical aet. CRE$_{LW}$* ranges from 3% to 40% from dry to wet atmospheric conditions respectively and is also parameterized.

The four ground-based sites displayed significant differences concerning CRE$_{SW}$ and CRE$_{LW}$ annual average and the seasonal variability. The mid-latitude ARM SGP site presents a seasonal mean CRE$_{LW}$ greatest during the winter (18 W m$^{-2}$) and least during summer (10 W m$^{-2}$) due to water vapor mask and an annual cycle of cirrus cloud base altitude dependency. The tropical ARM TWP site displayed quasi-null CRE$_{LW}$ with annual average value about 1 W m$^{-2}$ related to strong water vapor content. The subvisible cirrus class (COT<0.03) over mid-latitude sites, that represents 20% of the population, induces a significant increase in surface LW irradiance at the 2-7 W m$^{-2}$ level. The semi-transparent cirrus class (0.03<COT<0.3), that represents 45% of the population, will affect the surface SW irradiance by -12 to -25 W m$^{-2}$. The SW radiative impact of medium altitude cirrus clouds (9-11 km) is ranges from -20 to -45 W m$^{-2}$, while that of the thicker cirrus (0.3<COT<3) is greater than 95 W m$^{-2}$ on average.

Global CRE estimations show very significant zonal and seasonal variability of each components of the CRE$_{LW}$, CRE$_{LW}$ is 0.4 W m$^{-2}$ during winter/autumn for 15°N-75°N and 1 W m$^{-2}$ for 45°S-75°S whereas near 3 W m$^{-2}$ for 15°S-15°N (major influence of the sunshine duration that modulate significantly the ratio CRE$_{SW}$/CRE$_{LW}$). Summer period shows a cirrus cloud global cooling at all the latitudes except for 75°S-45°S with a quasi null effect and a peak at -3.6 W m$^{-2}$ for 15°S-45°N. The global average cumulative CRE are -2.8, 1.7 and -1.1 W m$^{-2}$ for CRE$_{SW}$, CRE$_{LW}$ and CRE$_{NET}$ respectively. For high latitudes region (tropical), 45°N-75°N (15°S-15°N) these annual average values are -1.3, 0.9 and -0.4 W m$^{-2}$ (-5.2, 2.4 and -2.8 W m$^{-2}$) respectively. These important zonal and seasonal CRE values highlight that cirrus clouds can affect significantly regional and global radiative budget and that we ought to optimize the parameterization taken into account in the climate modelling.

REFERENCES

